```
//
//
// CPU_TimeSync for 2500P-ACP1 Version 1.2 (includes DST)
//
//
//
(*
```

This Project synchronizes time to NTP time on CTI 2500 Series and Simatic/TI505 CPUs. It sets time over Ethernet, and requires a 2572 / CP2572 / 2572A / 2572B card. It will also work using the built-in Ethernet port on CTI CPUs. An open connection on port 1505 to the Ethernet card or CPU must be available.

IMPORTANT - THIS APPLICATION IS PROVIDED "AS-IS" WITH NO WARRANTIES, EXPRESSED OR IMPLIED.

HOW IT WORKS

On the interval NTP_sync_interval, the program queries the NTP server using UDP to get the current time, then sets the real time clock on the ACP1 from the NTP time.

On the interval CPU_sync_interval, the program sets the clock in each CPU from the list of IP addresses, using the current clock on the ACP1. The program will work with up to 49 IP addresses. The clock set command to the CPU is done using a TCP connection to port 1505. The connection is used only long enough to set the clock, then it is closed.

The ACP1 must **NOT** be set to sync to a host CPU, as the ACP1 clock is used for ongoing sync operations to the list of CPUs.

Because the program (optionally) uses NTP for setting the ACP1 clock, it requires internet connectivity to communicate with the NTP server. The default IP address setting for NTP is for the U.S. Government "time-d.nist.gov" server. If access to an NTP server is not possible, then the program can still run in "non-NTP" mode where all CPUs are synchronized to the ACP1 clock.

IMPORTANT NOTE

Time is read from NTP servers as a 32bit number of seconds since Jan 1 1900 00:00:00. Accordingly, NTP time overflows (and starts back at 0) on Feb 7 2036 at 06:28:15. This program does NOT presently handle this overflow.

IMPORTANT NOTE

This program synchronizes to UTC time. UTC time does not does adjust for daylight savings time, which is observed in different parts of the world, with different start and end times. The parameter UTC_offset can be adjusted to account for DST changes, but will need to be changed manually twice per year, on the correct date.

SETUP

The following variables must be set:

NTP_SyncEnable = TRUE to allow periodic sync of the ACP1 clock to NTP time (default TRUE) = FALSE to run in "non-NTP" mode

NTP_SyncInterval = time in seconds between NTP synchronizations of the ACP1 clock default 21600 seconds [6hr]

NOTE: ACP1 worst-case clock drift is 134 seconds per month

NTPServerAddr = IP address for the NTP server to be used (default 129.6.15.27)

UTC offset = local time offset from UTC time in hours + or - (default -5 is US EST)

User_SecondsAdjustment = allows user to add or subtract seconds to NTP time (default 0)

CPU_SyncEnable = TRUE to allow periodic sync of the CPU list to the ACP1 clock (default TRUE)

CPU>SyncInterval = time in seconds between synchonizations of the entire CPU list (default = ***

default 86400 seconds [24hr]

NOTE: CPU worse-case clock drift is 20 seconds per month CPU_List[2,50] = list of IP addresses and names for the CPUs (up to 50) number_CPUs = number of CPUs in the IP address list

TROUBLESHOOTING

This program produces two variables with troubleshooting information about NTP and CPU synchonization. In the event of a problem, these are valuable for diagnosing the error.

NTP_SyncLog - this is a structure containing 18 elements with NTP diagnostics for the most recent NTP sync attempt

NTP SyncLog.IPaddress = ip address of NTP server used

NTP SyncLog.socket = socket used for the connection

NTP_SyncLog.connection_timeout = TRUE if there was a timeout on the OPEN attempt

NTP_SyncLog.invalid_socket = TRUE if an invalid socket was returned on the OPEN attempt

NTP SyncLog.successful connect = TRUE if a successful connection was made

NTP_SyncLog.AddrBufferSuccess = TRUE if the addressbuffer allocation succeeded

NTP SyncLog.UDPSendSuccess = TRUE if the UDP command was succesfully sent to the NTP server

NTP SyncLog.NTPQueryString = the query string sent to the NTP server

NTP SyncLog.updCharsReceived = number of characters returned from the NTP server

NTP SyncLog.seconds = seconds since Jan 1 1900 00:00:00 calculated from the returned NTP time

NTP_SyncLog.string_seconds = string representing number of seconds above

NTP SyncLog.SetRTCsuccess = TRUE if the RTC on the ACP1 was successfully set

NTP_SyncLog.successful_close = TRUE if the socket was successfully closed

NTP_SyncLog.close_timeout = TRUE if there was a timeout before the socket closed

NTP_SyncLog.NTPgoodResponse = TRUE if we received a valid response from the NTP server

NTP SyncLog.receive timeout = TRUE if we had a timeout before received a response from NTP server

NTP SyncLog.NTPReceiveString = the string returned from the NTP server

NTP_SyncLog.ValidNTPtime = TRUE if the NTP time returned was valid for use in this program (Jan 1 2017 00:00:00 throug Feb 7 2036 06:28:15)

SyncLog - this is a "structure" array where each record (49 total) contains diagnostics for the most recent CPU synchronization attempt. Each record of the array corresponds to a different CPU IPaddress from the IPaddress array.

SyncLog[n].IPaddress = IP address of the CPU where the attempt was made

SyncLog[n].SetTimeString = time set string sent to the CPU

SyncLog[n].ResponseString = response string returned from the CPU

SyncLog[n].CharactersSent = number of characters sent

SyncLog[n].OpenResult = TRUE if the TCP connection was successfully opend

SyncLog[n].CloseResult = TRUE if the TCP connection was successfully closed

SyncLog[n].SendResult = TRUE if the time set command was successfully sent

SyncLog[n].ResponseResult = TRUE if the response coming from the CPU confirmed the time set

SyncLog[n].SocketUsed = socket used for the connection

SyncLog[n].OpenTime = time it took to open the connection (msec)

SyncLog[n].CloseTime = time it took to close the connection (msec)

SyncLog[n].OpenTimeout = TRUE if there was a timeout trying to open the connection

SyncLog[n].CloseTimeout = TRUE if there was a timeout trying to close the connection

SyncLog[n].CharactersReceived = number of characters received in the reply from the CPU

SyncLog[n].InvalidSocket = TRUE if "invalid socket" is returned when opening or closing connection Normally, this would mean the connection got dropped

SyncLog[n].ResponseTimeout = TRUE if there was a timeout while waiting for a response from the CPU

REVISION HISTORY

- REV 1.0 17NOV2017 Initial Release
- REV 1.1 14JUN2018 Change CPU sync logic so it syncs the first time the program is run, and then waits CPU_SyncInterval before the next sync. This was done by moving the CPU_SyncInterval check from the top of the SFC to the bottom
- REV 1.2 16OCT2018 Started adding DST offset calculation