
IMPORTANT NOTE CONCERNING ADDRESSING IN MODBUS NETWORKS

This application note includes important information regarding variations in Modbus address
nomenclature. If you experience difficulty getting Modbus communications to work when using the
2500P-ECC1, please read this note carefully.

Nomenclature
The original Modicon PLC’s provided coils, discrete inputs, Input registers, and Holding registers as set of
memory tables. Each register set could hold up to 9999 elements as shown below.

Memory Address Type Memory Type

1-9999 Read-Write Discrete Output Coils

10001-19999 Read-Only Discrete Input Contacts

30001-39999 Read-Only Analog Input Registers

40001-49999 Read-Write Analog Output Holding Registers

Modicon users began referring to the memory tables by their address range rather than the memory
type.

The Modbus protocol does not use the Modicon PLC model. Instead, it uses a function code (similar to a
task code) to designate which memory type to access. For example, there is a function code to read
multiple holding registers. Further, Modbus addresses are not limited to 9999 per type. Instead, Modbus
supports 65,536 addresses per Memory Type.

Nevertheless, some users continue to refer to the memory types by their Modicon PLC address and
some software drivers let the user enter the Modicon nomenclature, converting to an actual Modbus
address in the software.

The solution to this is to simply drop the top digit when configuring the server, so that 40010 becomes
Holding register address 10. But there is one more wrinkle discussed below.

Modbus Base Address
In the Modbus protocol, the first element of each memory type is 1. The Modbus “on the wire” protocol
represents the address as an offset. Thus memory address 1 is represented as 0 in the protocol. Protocol
software is supposed to convert between offset and address. Thus, when an address is transmitted a
value of 1 is subtracted from the memory address and when it is received a value of 1 is added back.
Unfortunately, because documentation was sparse when Modbus began to be used outside of Modicon,
some implementations did not make the conversion. While this works fine as long as the same company
developed the master and the slave. But there can be problems if the Master and Slave implement it
differently as shown in the following example.

Assume that the CTI server operation complies with the open Modbus specification adds 1 to the
address transmitted in the protocol. If the Master does not perform the conversion from address to
offset, then the address will be off by 1. For example, an address of 100 would be transmitted as 100;
when received, the value will be converted to address 101. In this case, the master would need to access

a register that is one less to get the desired address (e.g. read holding register 40099 to obtain the value
from HR 100.

A similar problem can occur with master implementations that consider the first “address” is 0, because
that is the value transmitted in Modbus. In that case, a request to reading holding register 40000 will get
the data from the first Modbus holding register address but it will be referred to as Holding Register
address 1. In this case, the solution is recognizing the offset difference at the master. This case is easier
to recognize, since one question will reveal it: “What address does the master software use to address
the first holding register. “

